y = clf.evaluate(x_test, y_test)
// MLP for Pima Indians Dataset with 10-fold cross validation
scores = clf.cross_validate(X, Y, 2)
print(np.mean(scores))
print(np.std(scores))
// split into input (X) and output (Y) variables
// define 10-fold cross validation test harness
After Change
DEVICE_ID = DEVICE_ID_LIST[0] // grab first element from list
// Set CUDA_VISIBLE_DEVICES to mask out all other GPUs than the first available device id
os.environ["CUDA_VISIBLE_DEVICES"] = str(DEVICE_ID)
from autokeras import constant
from autokeras.classifier import ImageClassifier