if len(inputs_shape) != 3:
raise Exception("RNN : Input dimension should be rank 3 : [batch_size, n_steps, n_features]")
with tf.name_scope(self.name) as scope:
self.cell.build(tuple(inputs_shape))
if self._weights is None:
self._weights = list()
for var in self.cell.trainable_variables:
self._weights.append(var)