c672738b39c8f739551da0d88991a2fedfba3e14,deeppavlov/models/ranking/metrics.py,,rank_response,#Any#Any#,37
Before Change
if predictions[i][j] in np.arange(labels[i][j]):
ranks.append(j)
break
return np.mean(np .asarray(ranks).astype(float))
@register_metric("loss")
After Change
num_examples = float(len(y_pred))
predictions = np.array(y_pred)
predictions = np.flip(np.argsort(predictions, -1), -1)
rank_tot = 0
for el in predictions:
for i, x in enumerate(el):
if x == 0:
rank_tot += i
break
return float(rank_tot)/num_examples
@register_metric("r@1_insQA")
def r_at_1_insQA(y_true, y_pred):
return recall_at_k_insQA(y_true, y_pred, k=1)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: deepmipt/DeepPavlov
Commit Name: c672738b39c8f739551da0d88991a2fedfba3e14
Time: 2018-10-04
Author: puleon@mail.ru
File Name: deeppavlov/models/ranking/metrics.py
Class Name:
Method Name: rank_response
Project Name: NifTK/NiftyNet
Commit Name: ebbc9fc0fc52a650ebd5bbbd954733bada35672e
Time: 2017-08-08
Author: wenqi.li@ucl.ac.uk
File Name: niftynet/layer/histogram_normalisation.py
Class Name: HistogramNormalisationLayer
Method Name: layer_op
Project Name: keras-team/keras
Commit Name: 1dc67f374cde47a721e5fe5d9237bc2573bda2f0
Time: 2017-07-06
Author: souptc@gmail.com
File Name: keras/backend/cntk_backend.py
Class Name:
Method Name: in_test_phase