c88688032b3173bb140677e0e4e7b481efd3a5b9,onmt/Models.py,Encoder,forward,#Encoder#Any#Any#Any#,126
Before Change
if self.encoder_layer == "mean":
// No RNN, just take mean as final state.
mean = emb .mean(0).unsqueeze(0) \
.expand(self.layers, n_batch, vec_size)
return (mean, mean), emb
After Change
// CHECKS
s_len, n_batch, n_feats = input.size()
if lengths is not None:
n_batch_ = lengths.size()
aeq(n_batch, n_batch_)
// END CHECKS
emb = self.embeddings(input)
s_len, n_batch, vec_size = emb.size()
if self.encoder_layer == "mean":
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: OpenNMT/OpenNMT-py
Commit Name: c88688032b3173bb140677e0e4e7b481efd3a5b9
Time: 2017-07-05
Author: srush@sum1gpu01.rc.fas.harvard.edu
File Name: onmt/Models.py
Class Name: Encoder
Method Name: forward
Project Name: maciejkula/spotlight
Commit Name: bc51dbc0c56f68ed30857755026633f78eef1ae8
Time: 2017-08-20
Author: maciej.kula@gmail.com
File Name: spotlight/layers.py
Class Name: BloomEmbedding
Method Name: forward
Project Name: OpenNMT/OpenNMT-py
Commit Name: bc0ac45c0bf4f66d56df6c54f5230c6c4281daf1
Time: 2017-05-31
Author: srush@sum1gpu02.rc.fas.harvard.edu
File Name: onmt/Translator.py
Class Name: Translator
Method Name: translateBatch