f19ace982075ea009af81f5e9f687cc2276f50ea,scripts/bert/fp16_utils.py,,grad_global_norm,#Any#Any#,24

Before Change


        x = array.reshape((-1,)).astype("float32", copy=False)
        return nd.dot(x, x)

    norm_arrays = [_norm(arr) for arr in arrays]

    // group norm arrays by ctx
    def group_by_ctx(arr_list):

After Change


        mx.autograd.backward(ls)

    def step(self, batch_size, max_norm=None):
        Makes one step of parameter update. Should be called after
        `fp16_optimizer.backward()`, and outside of `record()` scope.

        Parameters
        ----------
        batch_size : int
            Batch size of data processed. Gradient will be normalized by `1/batch_size`.
            Set this to 1 if you normalized loss manually with `loss = mean(loss)`.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: dmlc/gluon-nlp
Commit Name: f19ace982075ea009af81f5e9f687cc2276f50ea
Time: 2020-01-20
Author: 50716238+MoisesHer@users.noreply.github.com
File Name: scripts/bert/fp16_utils.py
Class Name:
Method Name: grad_global_norm


Project Name: catalyst-team/catalyst
Commit Name: df7332c3ba49e782f14414639e537f37a19133a8
Time: 2019-05-13
Author: vvelicodnii@snapchat.com
File Name: catalyst/utils/plotly.py
Class Name:
Method Name: get_tensorboard_scalars


Project Name: microsoft/nni
Commit Name: f7b7edac5b9e329ffdda30d710f68db71d08e065
Time: 2020-11-22
Author: 38930155+chicm-ms@users.noreply.github.com
File Name: nni/common/graph_utils.py
Class Name: TorchModuleGraph
Method Name: _build_graph