5e599fb01df65d156a40f7a138ab6627a06a50db,gpflow/optimizers/natgrad.py,NaturalGradient,_natgrad_steps,#NaturalGradient#Any#Any#,113
Before Change
self._natgrad_step(loss_fn, q_mu, q_sqrt, xi_transform)
with tf.name_scope(f"{self._name}/natural_gradient_steps"):
list(map(natural_gradient_step, *zip(*parameters)) )
def _natgrad_step(
self, loss_fn: Callable, q_mu: Parameter, q_sqrt: Parameter, xi_transform: XiTransform
After Change
tape.watch(unconstrained_variables)
loss = loss_fn()
q_mu_grads, q_sqrt_grads = tape.gradient(loss, [q_mus, q_sqrts])
// NOTE that these are the gradients in *unconstrained* space
with tf.name_scope(f"{self._name}/natural_gradient_steps"):
for q_mu_grad, q_sqrt_grad, q_mu, q_sqrt, xi_transform in zip(
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: GPflow/GPflow
Commit Name: 5e599fb01df65d156a40f7a138ab6627a06a50db
Time: 2020-05-07
Author: 6815729+condnsdmatters@users.noreply.github.com
File Name: gpflow/optimizers/natgrad.py
Class Name: NaturalGradient
Method Name: _natgrad_steps
Project Name: GPflow/GPflow
Commit Name: b41d4f38436e4a090c940dbd3bc7e2afd39a283e
Time: 2020-04-23
Author: st--@users.noreply.github.com
File Name: gpflow/optimizers/natgrad.py
Class Name: NaturalGradient
Method Name: _natgrad_steps
Project Name: deepmind/sonnet
Commit Name: 8c6540d278883cd3c78b501c69ad67a99d8b34a4
Time: 2017-06-12
Author: noreply@google.com
File Name: sonnet/python/modules/basic.py
Class Name: BatchApply
Method Name: _build