53633acd7c861fd73e3954088a48d0ac8dc42895,niftynet/application/gan_application.py,GANApplication,connect_data_and_network,#GANApplication#Any#Any#,132
Before Change
learning_rate=self.action_param.lr)
// a new pop_batch_op for each gpu tower
data_dict = self.get_sampler()[0].pop_batch_op()
images = tf.cast(data_dict["image"], tf.float32)
noise_shape = [self.net_param.batch_size,
self.gan_param.noise_size]
noise = tf.Variable(tf.random_normal(shape=noise_shape,
mean=0.0,
stddev=1.0,
dtype=tf.float32))
tf.stop_gradient(noise)
conditioning = data_dict["conditioning"]
net_output = self.net(noise,
images,
conditioning,
self.is_training)
loss_func = LossFunction(
loss_type=self.action_param.loss_type)
real_logits = net_output[1]
After Change
// add the grads back to application_driver"s training_grads
gradients_collector.add_to_collection(grads)
else:
data_dict = self.get_sampler()[0][0].pop_batch_op()
conditioning_dict = self.get_sampler()[1].pop_batch_op()
conditioning = conditioning_dict["conditioning"]
image_size = conditioning.shape.as_list()[:-1]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: NifTK/NiftyNet
Commit Name: 53633acd7c861fd73e3954088a48d0ac8dc42895
Time: 2017-11-01
Author: eli.gibson@gmail.com
File Name: niftynet/application/gan_application.py
Class Name: GANApplication
Method Name: connect_data_and_network
Project Name: NifTK/NiftyNet
Commit Name: 53633acd7c861fd73e3954088a48d0ac8dc42895
Time: 2017-11-01
Author: eli.gibson@gmail.com
File Name: niftynet/application/autoencoder_application.py
Class Name: AutoencoderApplication
Method Name: connect_data_and_network
Project Name: NifTK/NiftyNet
Commit Name: 01f1bcb376dfd967603c785a255f927dea2712b6
Time: 2017-11-15
Author: wenqi.li@ucl.ac.uk
File Name: demos/BRATS17/brats_segmentation.py
Class Name: BRATSApp
Method Name: connect_data_and_network