685126644ae540be72eb662527269a0395e2c9eb,onmt/IO.py,,make_features,#Any#Any#,59
Before Change
def make_features(batch, fields):
// TODO: This is bit hacky, add to batch somehow.
f = ONMTDataset.collect_features(fields)
cat = [batch.src[0]] + [batch.__dict__[k] for k in f]
cat = [c.unsqueeze(2) for c in cat]
return torch.cat(cat, 2)
def join_dicts(*args):
After Change
else:
data = batch.__dict__[side]
feat_start = side + "_feat_"
features = sorted(batch.__dict__[k]
for k in batch.__dict__ if feat_start in k)
levels = [data] + features
return torch.cat([level.unsqueeze(2) for level in levels], 2)
def join_dicts(*args):

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: OpenNMT/OpenNMT-py
Commit Name: 685126644ae540be72eb662527269a0395e2c9eb
Time: 2017-09-05
Author: bpeters@coli.uni-saarland.de
File Name: onmt/IO.py
Class Name:
Method Name: make_features
Project Name: chainer/chainercv
Commit Name: 634b34cf78d7218fc04feef17581bd2482fe7a79
Time: 2017-07-03
Author: yuyuniitani@gmail.com
File Name: chainercv/datasets/directory_parsing_classification_dataset.py
Class Name:
Method Name: directory_parsing_label_names
Project Name: dmlc/gluon-nlp
Commit Name: 693d7ba4f19678bd2d96af8ed78c3fde7b4990a1
Time: 2018-11-23
Author: leonard@lausen.nl
File Name: scripts/word_embeddings/evaluate_pretrained.py
Class Name:
Method Name: load_embedding_from_path