print("Preparing embedding matrix.")
// prepare embedding matrix
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
After Change
nb_words = min(MAX_NB_WORDS, len(word_index))
embedding_matrix = np.zeros((nb_words + 1, EMBEDDING_DIM))
for word, i in word_index.items():
if i > MAX_NB_WORDS:
continue
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
// words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector