f19ace982075ea009af81f5e9f687cc2276f50ea,scripts/bert/fp16_utils.py,,grad_global_norm,#Any#Any#,24
Before Change
x = array.reshape((-1,)).astype("float32", copy=False)
return nd.dot(x, x)
norm_arrays = [_norm(arr) for arr in arrays]
// group norm arrays by ctx
def group_by_ctx(arr_list):
groups = collections.defaultdict(list)
After Change
batch_size : int
Batch size of data processed. Gradient will be normalized by `1/batch_size`.
Set this to 1 if you normalized loss manually with `loss = mean(loss)`.
max_norm : NDArray, optional, default is None
max value for global 2-norm of gradients.
self.fp32_trainer.allreduce_grads()
step_size = batch_size * self._scaler.loss_scale
if max_norm:
_, ratio, is_finite = nlp.utils.grad_global_norm(self.fp32_trainer._params,
max_norm * self._scaler.loss_scale)
step_size = ratio * step_size
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: dmlc/gluon-nlp
Commit Name: f19ace982075ea009af81f5e9f687cc2276f50ea
Time: 2020-01-20
Author: 50716238+MoisesHer@users.noreply.github.com
File Name: scripts/bert/fp16_utils.py
Class Name:
Method Name: grad_global_norm
Project Name: uber/ludwig
Commit Name: ca98f96d527a03a7d7d76377eff44e1591d93ebe
Time: 2020-05-04
Author: jimthompson5802@gmail.com
File Name: ludwig/models/modules/combiners.py
Class Name: ConcatCombiner
Method Name: call
Project Name: ray-project/ray
Commit Name: 62c7ab518214286a4721dd7410978effd6d05471
Time: 2020-11-12
Author: sven@anyscale.io
File Name: rllib/execution/train_ops.py
Class Name: TrainTFMultiGPU
Method Name: __call__