343a835a26b6fbf1b7bd62965b74ed2d688319a5,auto_ml/utils_ensemble.py,Ensemble,get_summary_stats,#Ensemble#Any#,80
Before Change
for row_idx, row in predictions_df.iterrows():
row_results = {}
if self.type_of_estimator == "classifier":
// TODO(PRESTON): This is erroring out when we use "ml" as our ensemble method
// TypeError: object of type "numpy.float64" has no len()
num_classes = len(row[0])
for class_prediction_idx in range(num_classes):
class_preds = [estimator_prediction[class_prediction_idx] for estimator_prediction in row]
class_summarized_predictions = self.get_summary_stats_from_row(class_preds, prefix="subpredictor_class=" + str(class_prediction_idx))
row_results.update(class_summarized_predictions)
else:
row_summarized = self.get_summary_stats_from_row(row, prefix="subpredictors_")
row_results.update(row_summarized)
summarized_predictions.append(row_results)
results_df = pd.DataFrame(summarized_predictions)
return results_df
After Change
// Each item in those subestimator lists represents the predicted probability of that class
if isinstance(predictions_df, dict):
flattened_dict = []
for k, v in predictions_df.items():
flattened_dict.append(v)
summarized_predictions.append(self.process_one_row(flattened_dict))
else:
for row_idx, row in predictions_df.iterrows():
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: ClimbsRocks/auto_ml
Commit Name: 343a835a26b6fbf1b7bd62965b74ed2d688319a5
Time: 2016-12-08
Author: ClimbsBytes@gmail.com
File Name: auto_ml/utils_ensemble.py
Class Name: Ensemble
Method Name: get_summary_stats
Project Name: wkentaro/labelme
Commit Name: 448bd4a78699766aea66231ba442b8b5826d2a05
Time: 2019-05-15
Author: www.kentaro.wada@gmail.com
File Name: labelme/widgets/label_dialog.py
Class Name: LabelDialog
Method Name: resetFlags
Project Name: uber/ludwig
Commit Name: 690e6c8f9a42cf5b42dc010dfb073e54175da221
Time: 2020-05-07
Author: jimthompson5802@gmail.com
File Name: ludwig/models/modules/combiners.py
Class Name: ConcatCombiner
Method Name: call