26421ce20c6b626ceacafbb3282cad1d5dce04ca,onmt/Models.py,Embeddings,forward,#Embeddings#Any#,60
Before Change
Return:
emb (FloatTensor): len x batch x input_size
word = self.word_lut(src_input[:, :, 0 ])
emb = word
if self.feature_dicts:
features = [feature_lut(src_input[:, :, j+1])
After Change
Return:
emb (FloatTensor): len x batch x sum of feature embedding sizes
feat_inputs = (feat.squeeze(2) for feat in src_input.split(1, dim=2))
features = [lut(feat) for lut, feat in zip(self.emb_luts, feat_inputs)]
emb = self.merge(features)
return emb
class Encoder(nn.Module):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: OpenNMT/OpenNMT-py
Commit Name: 26421ce20c6b626ceacafbb3282cad1d5dce04ca
Time: 2017-07-30
Author: bpeters@coli.uni-saarland.de
File Name: onmt/Models.py
Class Name: Embeddings
Method Name: forward
Project Name: OpenNMT/OpenNMT-py
Commit Name: f6f6ee1df8d619d9816a5296bebca5736fa952bf
Time: 2017-09-21
Author: bpeters@coli.uni-saarland.de
File Name: translate.py
Class Name:
Method Name: main
Project Name: maciejkula/spotlight
Commit Name: 70e4d7fe60a9658bb27b9f5fb67592a1222b2ec3
Time: 2017-07-06
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/representations.py
Class Name: LSTMNet
Method Name: user_representation