d1ac7b831ad36cd0e4bdd7980819f83208345148,gpflow/expectations.py,,_expectation,#Any#Any#Any#Any#Any#,560

Before Change



    if not kern.on_separate_dimensions:
        raise NotImplementedError("Product currently needs to be defined on separate dimensions.")  // pragma: no cover
    with tf.control_dependencies([
        tf.assert_equal(tf.rank(p.var), 2,
                        message="Product currently only supports diagonal Xcov.", name="assert_Xcov_diag"),
    ]):
        _expectation_fn = lambda k: _expectation(p, k, feat, k, feat)
        return functools.reduce(tf.multiply, [_expectation_fn(k) for k in kern.kern_list])


@dispatch(DiagonalGaussian, object, (InducingFeature, type(None)), object, (InducingFeature, type(None)))
def _expectation(p, obj1, obj2, obj3, obj4):
    gauss = Gaussian(p.mu, tf.matrix_diag(p.var))
    return _expectation(gauss, obj1, obj2, obj3, obj4)

After Change


    
    with params_as_tensors_for(mean1), params_as_tensors_for(mean2):
        N = tf.shape(p.mu)[0]
        e_xxt = p.cov + (p.mu[:, :, None] * p.mu[:, None, :])  // NxDxD
        e_xxt_A = tf.matmul(e_xxt, tf.tile(mean2.A[None, ...], (N, 1, 1)))  // NxDxQ
        e_x_bt = p.mu[:, :, None] * mean2.b[None, None, :]  // NxDxQ

        return e_xxt_A + e_x_bt


@dispatch(Gaussian, mean_functions.Linear, type(None), mean_functions.Identity, type(None))
def _expectation(p, mean1, none1, mean2, none2):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: GPflow/GPflow
Commit Name: d1ac7b831ad36cd0e4bdd7980819f83208345148
Time: 2018-02-07
Author: alex.ialongo@gmail.com
File Name: gpflow/expectations.py
Class Name:
Method Name: _expectation


Project Name: NifTK/NiftyNet
Commit Name: 135a56e0935fbb04811f8ce7b9f514f498212f71
Time: 2018-07-25
Author: wenqi.li@ucl.ac.uk
File Name: niftynet/layer/crf.py
Class Name:
Method Name: ftheta


Project Name: GPflow/GPflow
Commit Name: d1ac7b831ad36cd0e4bdd7980819f83208345148
Time: 2018-02-07
Author: alex.ialongo@gmail.com
File Name: gpflow/expectations.py
Class Name:
Method Name: _expectation