cfg.dataset_type == "scalecrop"
or cfg.dataset_type == "tensorpack"
or cfg.dataset_type == "deterministic"
) and cfg["batch_size"] != 1:
print(
"Switching batchsize to 1, as the tensorpack/ scalecrop/ deterministic loader does not support batches >1. Use imgaug/default loader for larger batch sizes."
)
cfg["batch_size"] = 1 // in case this was edited for analysis.-
After Change
for it in range(max_iter + 1):
if "efficientnet" in cfg.net_type:
dict={tstep: it}
current_lr = sess.run(learning_rate,feed_dict=dict)
else:
current_lr = lr_gen.get_lr(it)
dict={learning_rate: current_lr}