70a188776f7470c838dd22b1636462b75573a734,src/gluonnlp/models/bert.py,BertModel,__init__,#BertModel#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,200
Before Change
self.weight_initializer = weight_initializer
self.bias_initializer = bias_initializer
self.layer_norm_eps = layer_norm_eps
with self.name_scope():
// Construct BertTransformer
self.encoder = BertTransformer(
units=units,
hidden_size=hidden_size,
num_layers=num_layers,
num_heads=num_heads,
attention_dropout_prob=attention_dropout_prob,
hidden_dropout_prob=hidden_dropout_prob,
output_attention=False,
output_all_encodings=False,
activation=activation,
layer_norm_eps=layer_norm_eps,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
dtype=dtype,
prefix="enc_",
)
self.encoder.hybridize()
// Construct word embedding
self.word_embed = nn.Embedding(input_dim=vocab_size,
output_dim=units,
weight_initializer=embed_initializer,
dtype=dtype,
prefix="word_embed_")
self.embed_layer_norm = nn.LayerNorm(epsilon=self.layer_norm_eps,
prefix="embed_ln_")
self.embed_dropout = nn.Dropout(hidden_dropout_prob)
// Construct token type embedding
self.token_type_embed = nn.Embedding(input_dim=num_token_types,
output_dim=units,
weight_initializer=weight_initializer,
prefix="token_type_embed_")
self.token_pos_embed = PositionalEmbedding(units=units,
max_length=max_length,
dtype=self._dtype,
method=pos_embed_type,
prefix="token_pos_embed_")
if self.use_pooler:
// Construct pooler
self.pooler = nn.Dense(units=units,
in_units=units,
flatten=False,
activation="tanh",
weight_initializer=weight_initializer,
bias_initializer=bias_initializer,
prefix="pooler_")
def hybrid_forward(self, F, inputs, token_types, valid_length):
// pylint: disable=arguments-differ
Generate the representation given the inputs.
After Change
hidden_dropout_prob=0.,
attention_dropout_prob=0.,
num_token_types=2,
pos_embed_type="learned",
activation="gelu",
layer_norm_eps=1E-12,
embed_initializer=TruncNorm(stdev=0.02),
weight_initializer=TruncNorm(stdev=0.02),
bias_initializer="zeros",
dtype="float32",
use_pooler=True):
super().__init__()
self._dtype = dtype
self.use_pooler = use_pooler
self.pos_embed_type = pos_embed_type
self.num_token_types = num_token_types
self.vocab_size = vocab_size
self.units = units
self.max_length = max_length
self.activation = activation
self.embed_initializer = embed_initializer
self.weight_initializer = weight_initializer
self.bias_initializer = bias_initializer
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: dmlc/gluon-nlp
Commit Name: 70a188776f7470c838dd22b1636462b75573a734
Time: 2020-07-16
Author: lausen@amazon.com
File Name: src/gluonnlp/models/bert.py
Class Name: BertModel
Method Name: __init__
Project Name: dmlc/gluon-nlp
Commit Name: 70a188776f7470c838dd22b1636462b75573a734
Time: 2020-07-16
Author: lausen@amazon.com
File Name: src/gluonnlp/models/bert.py
Class Name: BertForPretrain
Method Name: __init__
Project Name: dmlc/gluon-nlp
Commit Name: 70a188776f7470c838dd22b1636462b75573a734
Time: 2020-07-16
Author: lausen@amazon.com
File Name: src/gluonnlp/models/albert.py
Class Name: AlbertForPretrain
Method Name: __init__