f19ace982075ea009af81f5e9f687cc2276f50ea,scripts/bert/fp16_utils.py,,grad_global_norm,#Any#Any#,24

Before Change


            ctx = arr.context
            groups[ctx].append(arr)
        return groups
    norm_groups = group_by_ctx(norm_arrays)

    // reduce
    ctx, dtype = arrays[0].context, "float32"
    norms = [nd.add_n(*g).as_in_context(ctx) for g in norm_groups.values()]
    total_norm = nd.add_n(*norms).sqrt()
    scale = total_norm / max_norm
    // is_finite = 0 if NaN or Inf, 1 otherwise.
    is_finite = nd.contrib.isfinite(scale)

After Change


        batch_size : int
            Batch size of data processed. Gradient will be normalized by `1/batch_size`.
            Set this to 1 if you normalized loss manually with `loss = mean(loss)`.
        max_norm : NDArray, optional, default is None
            max value for global 2-norm of gradients.
        
        self.fp32_trainer.allreduce_grads()
        step_size = batch_size * self._scaler.loss_scale
        if max_norm:
            _, ratio, is_finite = nlp.utils.grad_global_norm(self.fp32_trainer._params,
                                                             max_norm * self._scaler.loss_scale)
            step_size = ratio * step_size
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: dmlc/gluon-nlp
Commit Name: f19ace982075ea009af81f5e9f687cc2276f50ea
Time: 2020-01-20
Author: 50716238+MoisesHer@users.noreply.github.com
File Name: scripts/bert/fp16_utils.py
Class Name:
Method Name: grad_global_norm


Project Name: dmlc/gluon-cv
Commit Name: 0fd13ccd7e61c9186127993080240c07b7ad905e
Time: 2019-10-28
Author: yizhu59@gmail.com
File Name: docs/tutorials/action_recognition/dive_deep_ucf101.py
Class Name:
Method Name:


Project Name: NTMC-Community/MatchZoo
Commit Name: cea292769af4ac688649573a11b20f4d69024e3d
Time: 2019-05-15
Author: 469413628@qq.com
File Name: tests/unit_test/processor_units/test_processor_units.py
Class Name:
Method Name: test_bert_tokenizer_unit