70a188776f7470c838dd22b1636462b75573a734,src/gluonnlp/models/bert.py,BertTransformer,__init__,#BertTransformer#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,110

Before Change



        with self.name_scope():
            self.all_layers = nn.HybridSequential(prefix="layers_")
            with self.all_layers.name_scope():
                for layer_idx in range(num_layers):
                    self.all_layers.add(
                      TransformerEncoderLayer(units=units,
                                              hidden_size=hidden_size,
                                              num_heads=num_heads,
                                              attention_dropout_prob=attention_dropout_prob,
                                              hidden_dropout_prob=hidden_dropout_prob,
                                              layer_norm_eps=layer_norm_eps,
                                              weight_initializer=weight_initializer,
                                              bias_initializer=bias_initializer,
                                              activation=activation,
                                              prefix="{}_".format(layer_idx)))

    def hybrid_forward(self, F, data, valid_length):
        
        Generate the representation given the inputs.

After Change


        self.embed_layer_norm = nn.LayerNorm(epsilon=self.layer_norm_eps)
        self.embed_dropout = nn.Dropout(hidden_dropout_prob)
        // Construct token type embedding
        self.token_type_embed = nn.Embedding(input_dim=num_token_types,
                                             output_dim=units,
                                             weight_initializer=weight_initializer)
        self.token_pos_embed = PositionalEmbedding(units=units,
                                                   max_length=max_length,
                                                   dtype=self._dtype,
                                                   method=pos_embed_type)
        if self.use_pooler:
            // Construct pooler
            self.pooler = nn.Dense(units=units,
                                   in_units=units,
                                   flatten=False,
                                   activation="tanh",
                                   weight_initializer=weight_initializer,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: dmlc/gluon-nlp
Commit Name: 70a188776f7470c838dd22b1636462b75573a734
Time: 2020-07-16
Author: lausen@amazon.com
File Name: src/gluonnlp/models/bert.py
Class Name: BertTransformer
Method Name: __init__


Project Name: dmlc/gluon-nlp
Commit Name: 70a188776f7470c838dd22b1636462b75573a734
Time: 2020-07-16
Author: lausen@amazon.com
File Name: src/gluonnlp/models/roberta.py
Class Name: RobertaEncoder
Method Name: __init__


Project Name: dmlc/gluon-nlp
Commit Name: 090944e816fd3ff8e861fba4452851e0a901491d
Time: 2019-01-28
Author: linhaibin.eric@gmail.com
File Name: scripts/language_model/large_word_language_model.py
Class Name:
Method Name: train