7f30b2403fadc4eaad48ceaf6154a626f477f8c8,autokeras/generator.py,DefaultClassifierGenerator,generate,#DefaultClassifierGenerator#Any#Any#,51

Before Change


        pooling_len = int(model_len / 4)
        output_tensor = input_tensor = Input(shape=self.input_shape)
        for i in range(model_len):
            output_tensor = BatchNormalization()(output_tensor)
            output_tensor = Activation("relu")(output_tensor)
            output_tensor = conv(model_width, kernel_size=self._get_shape(3), padding="same")(output_tensor)
            output_tensor = Dropout(constant.CONV_DROPOUT_RATE)(output_tensor)
            if (i + 1) % pooling_len == 0 and i != model_len - 1:
                output_tensor = pool(padding="same")(output_tensor)

        output_tensor = ave()(output_tensor)
        output_tensor = Dense(self.n_classes, activation="softmax")(output_tensor)
        return Model(inputs=input_tensor, outputs=output_tensor)


class RandomConvClassifierGenerator(ClassifierGenerator):
    A classifier generator that generates random convolutional neural networks.

After Change


        ave = get_ave_layer_func(len(self._get_shape(3)))

        pooling_len = int(model_len / 4)
        model = StubModel()
        model.input_shape = self.input_shape
        model.inputs = [0]
        model.layers.append(StubInput())
        for i in range(model_len):
            model.layers += [StubBatchNormalization(),
                             StubActivation("relu"),
                             StubConv(model_width, kernel_size=3, func=conv),
                             StubDropout(constant.CONV_DROPOUT_RATE)]
            if (i + 1) % pooling_len == 0 and i != model_len - 1:
                model.layers.append(StubPooling(func=pool))

        model.layers.append(StubGlobalPooling(ave))
        model.layers.append(StubDense(self.n_classes, activation="softmax"))
        model.outputs = [len(model.layers)]
        for index, layer in enumerate(model.layers):
            layer.input = index
            layer.output = index + 1
        return Graph(model, False)


class RandomConvClassifierGenerator(ClassifierGenerator):
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: keras-team/autokeras
Commit Name: 7f30b2403fadc4eaad48ceaf6154a626f477f8c8
Time: 2018-05-26
Author: jin@tamu.edu
File Name: autokeras/generator.py
Class Name: DefaultClassifierGenerator
Method Name: generate


Project Name: keras-team/autokeras
Commit Name: 4b83c1070cebd0d996ba2cc69779dcb66d5d0032
Time: 2018-05-29
Author: jhfjhfj1@gmail.com
File Name: autokeras/generator.py
Class Name: DefaultClassifierGenerator
Method Name: generate


Project Name: tensorlayer/tensorlayer
Commit Name: d3bdc5449964423387861c78edd9d890a81a5466
Time: 2019-03-31
Author: jingqing.zhang15@imperial.ac.uk
File Name: tests/layers/test_layers_recurrent.py
Class Name: Layer_RNN_Test
Method Name: setUpClass