286a864220a00732d382a75051e11877acf13c3f,deeppavlov/core/models/keras_model.py,KerasModel,load,#KerasModel#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,141

Before Change


            model with loaded weights and network parameters from files
            but compiled with given learning parameters
        
        if self.ser_path.is_dir():
            opt_path = "{}/{}_opt.json".format(self.ser_path, self._ser_file)
            weights_path = "{}/{}.h5".format(self.ser_path, self._ser_file)
        else:
            opt_path = "{}_opt.json".format(self.ser_path)
            weights_path = "{}.h5".format(self.ser_path)

        if Path(opt_path).exists() and Path(weights_path).exists():

            print("___Initializing model from saved___"
                  "\nModel weights file is %s.h5"

After Change


            but compiled with given learning parameters
        
        if self.load_path:
            if isinstance(self.load_path, Path) and not self.load_path.parent.is_dir():
                raise ConfigError("Provided save path is incorrect!")

            opt_path = Path("{}_opt.json".format(str(self.load_path.resolve())))
            weights_path = Path("{}.h5".format(str(self.load_path.resolve())))

            if opt_path.exists() and weights_path.exists():
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: deepmipt/DeepPavlov
Commit Name: 286a864220a00732d382a75051e11877acf13c3f
Time: 2018-01-24
Author: ol.gure@gmail.com
File Name: deeppavlov/core/models/keras_model.py
Class Name: KerasModel
Method Name: load


Project Name: deepmipt/DeepPavlov
Commit Name: 5390c650dadd1e86b6c43543ac0ed384e8ebfc4d
Time: 2018-05-15
Author: yoptar@gmail.com
File Name: deeppavlov/core/models/keras_model.py
Class Name: KerasModel
Method Name: save


Project Name: deepmipt/DeepPavlov
Commit Name: 286a864220a00732d382a75051e11877acf13c3f
Time: 2018-01-24
Author: ol.gure@gmail.com
File Name: deeppavlov/models/tokenizers/nltk_tokenizer.py
Class Name: NLTKTokenizer
Method Name: __init__