3ec1dac0608e511d4cf28e93a3fb908bbabceac5,nn/loss.py,LossFunction,set_loss_type,#LossFunction#Any#,15

Before Change


    def set_loss_type(self, type_str):
        // TODO raise an error if type_str is not a supported type of loss
        // and give support for typo error
        if type_str == "CrossEntropy":
            self.data_loss_fun = cross_entropy
        elif type_str == "Dice":
            self.data_loss_fun = dice
        elif type_str == "GDSC":
            self.data_loss_fun = GDSC_loss
        elif type_str == "SensSpec":
            self.data_loss_fun = sensitivity_specificity_loss

    def set_regularisation_type(self, type_str):
        if type_str == "L2":
            self.reg_loss_fun = l2_reg_loss

After Change


                              "Dice": dice,
                              "GDSC": GDSC_loss,
                              "SensSpec": sensitivity_specificity_loss}
        if type_str in accepted_functions.keys():
            self.data_loss_fun = accepted_functions[type_str]
        else:
            edit_distances = {}
            for loss_name in accepted_functions.keys():
                edit_distance = damerau_levenshtein_distance(loss_name, type_str)
                if edit_distance <= 2:
                    edit_distances[loss_name] = edit_distance
            if edit_distances:
                guess_at_correct_spelling = min(edit_distances, key=edit_distances.get)
                raise ValueError(("By "{0}", did you mean "{1}"?\n "
                                  ""{0}" is not a valid loss.").format(type_str, guess_at_correct_spelling))
            else:
                raise ValueError("Loss type "%s" is not found." % type_str)


                // if type_str == "CrossEntropy":
                //     self.data_loss_fun = cross_entropy
                // elif type_str == "Dice":
                //     self.data_loss_fun = dice
                // elif type_str == "GDSC":
                //     self.data_loss_fun = GDSC_loss
                // elif type_str == "SensSpec":
                //     self.data_loss_fun = sensitivity_specificity_loss

    def set_regularisation_type(self, type_str):
        if type_str == "L2":
            self.reg_loss_fun = l2_reg_loss
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: NifTK/NiftyNet
Commit Name: 3ec1dac0608e511d4cf28e93a3fb908bbabceac5
Time: 2017-04-26
Author: z.eaton-rosen@ucl.ac.uk
File Name: nn/loss.py
Class Name: LossFunction
Method Name: set_loss_type


Project Name: tensorlayer/tensorlayer
Commit Name: 23a41cfcac5976cab47133fed2f6f53d061e9173
Time: 2019-01-16
Author: dhsig552@163.com
File Name: tensorlayer/layers/core.py
Class Name: Layer
Method Name: __init__


Project Name: microsoft/nni
Commit Name: a850be48e6de9afdb04a0dab0c7facda871f623d
Time: 2019-04-28
Author: purityfan@163.com
File Name: src/sdk/pynni/nni/hyperopt_tuner/hyperopt_tuner.py
Class Name:
Method Name: _split_index