6abab74f85bf850de55fa9e39ece64b8a9eeff58,tf_unet/unet.py,Unet,__init__,#Unet#,179
Before Change
class_weights = tf.constant(np.array(class_weights, dtype=np.float32))
labels = tf.reshape(self.y, [-1, n_class])
weight_map = tf.mul(labels, class_weights)
weight_map = tf.reduce_sum(weight_map, axis=1)
loss_map = tf.nn.softmax_cross_entropy_with_logits(tf.reshape(logits, [-1, n_class]), labels)
weighted_loss = tf.mul(loss_map, weight_map)
loss = tf.reduce_mean(weighted_loss)
else:
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.reshape(logits, [-1, n_class]),
tf.reshape(self.y, [-1, n_class])))
After Change
if class_weights is not None:
class_weights = tf.constant(np.array(class_weights, dtype=np.float32))
weighted_logits = tf.mul(tf.reshape(logits, [-1, n_class]), class_weights)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(weighted_logits, tf.reshape(self.y, [-1, n_class])))
else:
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(tf.reshape(logits, [-1, n_class]),
tf.reshape(self.y, [-1, n_class])))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances
Project Name: jakeret/tf_unet
Commit Name: 6abab74f85bf850de55fa9e39ece64b8a9eeff58
Time: 2016-12-27
Author: jakeret@phys.ethz.ch
File Name: tf_unet/unet.py
Class Name: Unet
Method Name: __init__
Project Name: jakeret/tf_unet
Commit Name: 31516c4984224611174203a9822e102f94def3ac
Time: 2017-01-08
Author: jakeret@phys.ethz.ch
File Name: tf_unet/unet.py
Class Name: Unet
Method Name: _get_cost
Project Name: jakeret/tf_unet
Commit Name: 5e039083f5736d9a8f7e060a94e9d3079598acbd
Time: 2016-12-19
Author: felix.gruen@outlook.de
File Name: tf_unet/unet.py
Class Name: Unet
Method Name: __init__