91ca6d9c056351ceca85a73bad313fa9fe485da7,deepmedic/routines/training.py,,process_in_batches,#,26
Before Change
list_RpRnPpPn_per_class = results_of_run[1:-1] // [-1] is from updates_grouped_op, returns nothing
else: // validation
if batch_i == 0 or ((batch_i + 1) % print_progress_step) == 0 or (batch_i + 1) == n_batches:
log.print3("[VALIDATION] Validated on " +
str(batch_i) + "/" + str(n_batches) + " batches for this subepoch...")
ops_to_fetch = cnn3d.get_main_ops("val")
list_of_ops = ops_to_fetch["list_rp_rn_tp_tn"]
min_idx_batch = batch_i * batchsize
After Change
// Real Positives, Real Neg, True Predicted Pos, True Predicted Neg in subepoch, in this order.
arr_RpRnTpTn_per_class_in_subep = np.zeros([cnn3d.num_classes, 4], dtype="int32")
prefix_progress_str = "[TRAINING]" if train_or_val == "train" else "[VALIDATION]"
print_progress_step_tr_val(log, n_batches, 0, batchsize, prefix_progress_str)
for batch_i in range(n_batches):
if train_or_val == "train":
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 9
Instances Project Name: Kamnitsask/deepmedic
Commit Name: 91ca6d9c056351ceca85a73bad313fa9fe485da7
Time: 2020-01-20
Author: konstantinos.kamnitsas12@imperial.ac.uk
File Name: deepmedic/routines/training.py
Class Name:
Method Name: process_in_batches
Project Name: scikit-optimize/scikit-optimize
Commit Name: 3c956a6c512724ca3f75062ffcae40dfc0568427
Time: 2020-02-20
Author: holgernahrstaedt@gmx.de
File Name: skopt/optimizer/optimizer.py
Class Name: Optimizer
Method Name: __init__
Project Name: scikit-optimize/scikit-optimize
Commit Name: 24b57d44d27fc6a9a9c4dff4cac5c7c7d8025e67
Time: 2020-02-20
Author: holgernahrstaedt@gmx.de
File Name: skopt/optimizer/optimizer.py
Class Name: Optimizer
Method Name: __init__