163eb7df13667e21b0e02a2706e18d1f53eee610,skrebate/iterrelief.py,IterRelief,fit,#IterRelief#,69
Before Change
// Iterate till max iteration reached or all weights are really tiny
while ((iteration < self.max_iter) & (any(w >= 0.0001 for w in distance_weights))):
// Run Core Relief-based algorithm
core_fit = core.fit(self.X_mat, self._y, distance_weights, self.weight_flag)
After Change
//normalize and update scores
//negative numbers -> 0, positive numbers become normalized so maximum is 1.
for i in range(0, len(feature_weights)):
if feature_weights[i] <= 0:
feature_weights[i] = 0
else:
feature_weights[i] = feature_weights[i] / mx
distance_weights += feature_weights
iteration += 1
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 10
Instances Project Name: EpistasisLab/scikit-rebate
Commit Name: 163eb7df13667e21b0e02a2706e18d1f53eee610
Time: 2020-01-29
Author: alexmxu99@gmail.com
File Name: skrebate/iterrelief.py
Class Name: IterRelief
Method Name: fit
Project Name: EpistasisLab/scikit-rebate
Commit Name: ece383696800b9b34854df27a65a3d1d74669952
Time: 2020-05-28
Author: alexmxu@alexs-mbp-3.attlocal.net
File Name: skrebate/iterrelief.py
Class Name: IterRelief
Method Name: fit
Project Name: sentinel-hub/eo-learn
Commit Name: 084d3cb097d1eacea365bf0612ce11928ad22414
Time: 2019-11-29
Author: matic.lubej@sinergise.com
File Name: core/eolearn/core/eodata.py
Class Name: EOPatch
Method Name: save_aws