f0c15f219b0761b14329ddd416cda82fa4bae841,deslib/dcs/mcb.py,MCB,estimate_competence,#MCB#,98

Before Change



        // Use the whole neighborhood if no sample is selected to form the region of competence
        if len(selected_idx) == 0:
            selected_idx = idx_neighbors
        // Estimate the classifier competence for the filtered region of competence
        for clf_index in range(self.n_classifiers):

            // Check if the dynamic frienemy pruning (DFP) should be used used
            if self.DFP_mask[clf_index]:
                clf_competence = [self.processed_dsel[sample_idx][clf_index] for sample_idx in selected_idx]
                competences[clf_index] = np.mean(np.array(clf_competence))

        return competences

After Change



        // get a mask with the neighbors that will be considered for the competence estimation for all samples.
        boolean_mask = (S > self.similarity_threshold)
        boolean_mask[~np.any(boolean_mask, axis=1), :] = True
        // Expanding this mask to the third axis (n_classifiers) since it is the same for each classifier.
        boolean_mask = np.repeat(np.expand_dims(boolean_mask, axis=2), self.n_classifiers, axis=2)

        // Use the masked array mean to take into account the removed neighbors
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: scikit-learn-contrib/DESlib
Commit Name: f0c15f219b0761b14329ddd416cda82fa4bae841
Time: 2018-03-28
Author: rafaelmenelau@gmail.com
File Name: deslib/dcs/mcb.py
Class Name: MCB
Method Name: estimate_competence


Project Name: scikit-learn-contrib/DESlib
Commit Name: f149aefb729b02b9b3a297524eebb85594038657
Time: 2018-03-28
Author: rafaelmenelau@gmail.com
File Name: deslib/des/probabilistic.py
Class Name: Probabilistic
Method Name: select


Project Name: scikit-learn-contrib/DESlib
Commit Name: cd1a5446ce793d09f28d021c466a279301eb51f0
Time: 2018-04-01
Author: rafaelmenelau@gmail.com
File Name: deslib/des/meta_des.py
Class Name: METADES
Method Name: select