9b95e0f07b60b6a144893dcc506dfaf90db61c95,librosa/feature/utils.py,,stack_memory,#,119
Before Change
history = np.vstack([np.roll(data, -i * delay, axis=1) for i in range(n_steps)[::-1]])
// Trim to original width
if delay > 0:
history = history[:, :t]
else:
history = history[:, -t:]
// Make contiguous
return np.asfortranarray(history)
After Change
data = np.pad(data, [(0, 0), padding], **kwargs)
// Construct the shape of the target array
shape = list(data.shape)
shape[0] = shape[0] * n_steps
shape[1] = t
shape = tuple(shape)
// Construct the output array to match layout and dtype of input
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory
Project Name: LCAV/pyroomacoustics
Commit Name: f2e989565ab89af58dff63ab3cf89fe63af38327
Time: 2020-06-02
Author: fakufaku@gmail.com
File Name: examples/raytracing.py
Class Name:
Method Name:
Project Name: mittagessen/kraken
Commit Name: 6e6c12425a787d8c954ce5c31ceed59cdd531001
Time: 2018-05-20
Author: mittagessen@l.unchti.me
File Name: kraken/lib/ctc_decoder.py
Class Name:
Method Name: greedy_decoder