22425200b7220b2b410c9aa5ebc4c783f6cfe5df,lxmls/deep_learning/rnn.py,LSTM,__init__,#LSTM#,271
Before Change
def __init__(self, W_e, n_hidd, n_tags):
// Dimension of the embeddings
n_emb = W_e.shape[0]
// MODEL PARAMETERS
W_x = np.random.uniform(size=(4*n_hidd, n_emb)) // RNN Input layer
W_h = np.random.uniform(size=(4*n_hidd, n_hidd)) // RNN recurrent var
W_c = np.random.uniform(size=(3*n_hidd, n_hidd)) // Second recurrent var
W_y = np.random.uniform(size=(n_tags, n_hidd)) // Output layer
// Cast to theano GPU-compatible type
W_e = W_e.astype(theano.config.floatX)
W_x = W_x.astype(theano.config.floatX)
W_h = W_h.astype(theano.config.floatX)
W_c = W_c.astype(theano.config.floatX)
W_y = W_y.astype(theano.config.floatX)
// Store as shared parameters
_W_e = theano.shared(W_e, borrow=True)
_W_x = theano.shared(W_x, borrow=True)
_W_h = theano.shared(W_h, borrow=True)
_W_c = theano.shared(W_c, borrow=True)
_W_y = theano.shared(W_y, borrow=True)
// Class variables
self.n_hidd = n_hidd
self.param = [_W_e, _W_x, _W_h, _W_c, _W_y]
def _forward(self, _x, _h0=None, _c0=None):
After Change
np.random.seed(seed)
// MODEL PARAMETERS
W_e = 0.01*np.random.uniform(size=(n_emb, n_words)) // Embedding layer
W_x = np.random.uniform(size=(4*n_hidd, n_emb)) // RNN Input layer
W_h = np.random.uniform(size=(4*n_hidd, n_hidd)) // RNN recurrent var
W_c = np.random.uniform(size=(3*n_hidd, n_hidd)) // Second recurrent var
W_y = np.random.uniform(size=(n_tags, n_hidd)) // Output layer
// Cast to theano GPU-compatible type
W_e = W_e.astype(theano.config.floatX)
W_x = W_x.astype(theano.config.floatX)
W_h = W_h.astype(theano.config.floatX)
W_c = W_c.astype(theano.config.floatX)
W_y = W_y.astype(theano.config.floatX)
// Store as shared parameters
_W_e = theano.shared(W_e, borrow=True)
_W_x = theano.shared(W_x, borrow=True)
_W_h = theano.shared(W_h, borrow=True)
_W_c = theano.shared(W_c, borrow=True)
_W_y = theano.shared(W_y, borrow=True)
// Class variables
self.n_hidd = n_hidd
self.param = [_W_e, _W_x, _W_h, _W_c, _W_y]
def _forward(self, _x, _h0=None, _c0=None):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 12
Instances
Project Name: LxMLS/lxmls-toolkit
Commit Name: 22425200b7220b2b410c9aa5ebc4c783f6cfe5df
Time: 2016-06-21
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/rnn.py
Class Name: LSTM
Method Name: __init__
Project Name: LxMLS/lxmls-toolkit
Commit Name: 22425200b7220b2b410c9aa5ebc4c783f6cfe5df
Time: 2016-06-21
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/rnn.py
Class Name: NumpyRNN
Method Name: __init__
Project Name: LxMLS/lxmls-toolkit
Commit Name: 22425200b7220b2b410c9aa5ebc4c783f6cfe5df
Time: 2016-06-21
Author: ramon@astudillo.com
File Name: lxmls/deep_learning/rnn.py
Class Name: RNN
Method Name: __init__