f7e9f59ba8ab154067565560cc5040f31df928f5,mlxtend/classifier/perceptron.py,Perceptron,fit,#Perceptron#,47
Before Change
// check array shape
if not len(X.shape) == 2:
raise ValueError("X must be a 2D array. Try X[:,np.newaxis]")
// check if {0, 1} or {-1, 1} class labels are used
self.classes_ = np.unique(y)
if not (np.all(np.array([0, 1]) == self.classes_) or
np.all(np.array([-1, 1]) == self.classes_)):
raise ValueError("Only supports binary"
After Change
self.w_[0] += update
errors += int(update != 0.0)
if self.print_progress:
self._print_progress(epoch=i+1, cost=errors)
self.cost_.append(errors)
return self
def _init_weights(self, shape):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 11
Instances
Project Name: rasbt/mlxtend
Commit Name: f7e9f59ba8ab154067565560cc5040f31df928f5
Time: 2016-02-22
Author: mail@sebastianraschka.com
File Name: mlxtend/classifier/perceptron.py
Class Name: Perceptron
Method Name: fit
Project Name: rasbt/mlxtend
Commit Name: f7e9f59ba8ab154067565560cc5040f31df928f5
Time: 2016-02-22
Author: mail@sebastianraschka.com
File Name: mlxtend/classifier/adaline.py
Class Name: Adaline
Method Name: fit
Project Name: rasbt/mlxtend
Commit Name: f7e9f59ba8ab154067565560cc5040f31df928f5
Time: 2016-02-22
Author: mail@sebastianraschka.com
File Name: mlxtend/classifier/logistic_regression.py
Class Name: LogisticRegression
Method Name: fit