edac1ed27ba8a4db58f526af053d6cd2b4f50497,category_encoders/basen.py,BaseNEncoder,basen_to_integer,#BaseNEncoder#,335
Before Change
len0 = len(col_list)
value_array = np.array([base ** (len0 - 1 - i) for i in range(len0)])
X[col] = np.dot(X[col_list].values, value_array.T)
out_cols = [col0 for col0 in out_cols if col0 not in col_list]
X = X.reindex(columns=out_cols + cols)
return X
def col_transform(self, col, digits):
After Change
-------
numerical: DataFrame
out_cols = X.columns.values.tolist()
for col in cols:
col_list = [col0 for col0 in out_cols if str(col0).startswith(str(col))]
insert_at = out_cols.index(col_list[0])
if base == 1:
value_array = np.array([int(col0.split("_")[-1]) for col0 in col_list])
else:
len0 = len(col_list)
value_array = np.array([base ** (len0 - 1 - i) for i in range(len0)])
X.insert(insert_at,col,np.dot(X[col_list].values, value_array.T))
X.drop(col_list, axis=1, inplace=True)
out_cols = X.columns.values.tolist()
return X
def col_transform(self, col, digits):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 15
Instances
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: edac1ed27ba8a4db58f526af053d6cd2b4f50497
Time: 2019-03-22
Author: datarian@againstthecurrent.ch
File Name: category_encoders/basen.py
Class Name: BaseNEncoder
Method Name: basen_to_integer
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: 31f768dd2cd555649d2b0e494935cb37cf223142
Time: 2019-03-22
Author: datarian@againstthecurrent.ch
File Name: category_encoders/one_hot.py
Class Name: OneHotEncoder
Method Name: reverse_dummies
Project Name: scikit-learn-contrib/categorical-encoding
Commit Name: be4714db73202347a07044f2e26920e0da95fff3
Time: 2019-03-23
Author: datarian@againstthecurrent.ch
File Name: category_encoders/basen.py
Class Name: BaseNEncoder
Method Name: basen_to_integer