fde2f66676f960782c993f7148927c4a4197ab10,spotlight/factorization/explicit.py,ExplicitFactorizationModel,fit,#ExplicitFactorizationModel#,85
Before Change
for epoch_num in range(self._n_iter):
users, items, ratings = shuffle(*(interactions.row,
interactions.col,
interactions.data))
After Change
self._use_cuda)
item_ids_tensor = gpu(torch.from_numpy(items),
self._use_cuda)
ratings_tensor = gpu(torch.from_numpy(ratings),
self._use_cuda)
epoch_loss = 0.0
for (batch_user,

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: maciejkula/spotlight
Commit Name: fde2f66676f960782c993f7148927c4a4197ab10
Time: 2017-06-27
Author: maciej.kula@gmail.com
File Name: spotlight/factorization/explicit.py
Class Name: ExplicitFactorizationModel
Method Name: fit
Project Name: hassony2/kinetics_i3d_pytorch
Commit Name: 1f3da600c20e3376b0bb396bba482b1e90b7883c
Time: 2017-11-24
Author: yana.hasson@inria.fr
File Name: i3nception_tf.py
Class Name:
Method Name:
Project Name: mariogeiger/se3cnn
Commit Name: d9c24dfc42d3af7859d98fa237d665e18e0f5c9a
Time: 2019-10-05
Author: lapchevsky.k@gmail.com
File Name: se3cnn/util/dataset/crystals.py
Class Name: CrystalCIF
Method Name: preprocess