7f162085eca07b86fb00afec8fc62b5fee836b7b,main.py,,test,#,108
Before Change
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
After Change
if acc > best_acc:
print("Saving..")
state = {
"net": net.state_dict(),
"acc": acc,
"epoch": epoch,
}
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: kuangliu/pytorch-cifar
Commit Name: 7f162085eca07b86fb00afec8fc62b5fee836b7b
Time: 2018-04-25
Author: kuang.liu@hotmail.com
File Name: main.py
Class Name:
Method Name: test
Project Name: jindongwang/transferlearning
Commit Name: 2733bef356c53286d475a67476d88d4840923830
Time: 2020-09-30
Author: jindongwang@outlook.com
File Name: code/deep/finetune_AlexNet_ResNet/finetune_office31.py
Class Name:
Method Name: finetune
Project Name: explosion/thinc
Commit Name: cc53003029d11839c394a9544a1394b62721869d
Time: 2019-10-18
Author: honnibal+gh@gmail.com
File Name: thinc/extra/wrappers.py
Class Name: PyTorchWrapper
Method Name: use_params