b43325e297498269be86b281a02e2ef79664f273,train_variational_autoencoder_tensorflow.py,,inference_network,#,41
Before Change
mu: Mean parameters for the variational family Normal
sigma: Standard deviation parameters for the variational family Normal
with slim.arg_scope([slim.fully_connected] , activation_fn=tf.nn.relu):
net = slim.flatten(x)
net = slim.fully_connected(net, hidden_size)
net = slim.fully_connected(net, hidden_size)
After Change
mu: Mean parameters for the variational family Normal
sigma: Standard deviation parameters for the variational family Normal
inference_net = tfk.Sequential([
tfkl.Flatten(),
tfkl.Dense(hidden_size, activation=tf.nn.relu),
tfkl.Dense(hidden_size, activation=tf.nn.relu),
tfkl.Dense(latent_dim * 2, activation=None)
] )
gaussian_params = inference_net(x)
// The mean parameter is unconstrained
mu = gaussian_params[:, :latent_dim]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: altosaar/variational-autoencoder
Commit Name: b43325e297498269be86b281a02e2ef79664f273
Time: 2019-09-18
Author: altosaar@users.noreply.github.com
File Name: train_variational_autoencoder_tensorflow.py
Class Name:
Method Name: inference_network
Project Name: UFAL-DSG/tgen
Commit Name: 440a1edb391d097681c6abc43d110cec2eabc9fd
Time: 2015-07-15
Author: odusek@ufal.mff.cuni.cz
File Name: tgen/rank_nn.py
Class Name: EmbNNRanker
Method Name: _init_neural_network
Project Name: UFAL-DSG/tgen
Commit Name: 40e14ec749f66b774caeea550e71dfd81ea1a313
Time: 2015-05-27
Author: odusek@ufal.mff.cuni.cz
File Name: tgen/rank_nn.py
Class Name: EmbNNRanker
Method Name: _init_neural_network