66584dea87782aed5509e4269a9f015002e1f5c1,pytext/torchscript/module.py,PyTextEmbeddingModuleWithDense,forward,#PyTextEmbeddingModuleWithDense#,1232
Before Change
)
dense_feat = self.normalizer.normalize(dense_feat)
dense_tensor = torch.tensor(dense_feat, dtype=torch.float)
if self.tensorizer.device != "":
dense_tensor = dense_tensor.to(self.tensorizer.device)
sentence_embedding = self._forward(inputs, dense_tensor)
After Change
dense_feat: List[List[float]],
) -> torch.Tensor:
input_len = len(texts)
max_batch = self.get_max_batch_len()
if max_batch < 0:
max_batch = input_len

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: facebookresearch/pytext
Commit Name: 66584dea87782aed5509e4269a9f015002e1f5c1
Time: 2021-02-23
Author: mikekg@fb.com
File Name: pytext/torchscript/module.py
Class Name: PyTextEmbeddingModuleWithDense
Method Name: forward
Project Name: dmlc/dgl
Commit Name: cf8a3fb30547d6e980ecd8182f64a51df8e55c62
Time: 2021-02-10
Author: expye@outlook.com
File Name: python/dgl/backend/pytorch/tensor.py
Class Name:
Method Name: pad_packed_tensor
Project Name: mariogeiger/se3cnn
Commit Name: d9c24dfc42d3af7859d98fa237d665e18e0f5c9a
Time: 2019-10-05
Author: lapchevsky.k@gmail.com
File Name: se3cnn/util/dataset/crystals.py
Class Name: CrystalCIF
Method Name: preprocess