b45f35862afbca09ff1c70be1cc4d1d6ca6c9617,pyriemann/classification.py,MDM,_predict_distances,#MDM#,46

Before Change



        for m in range(Nc):
            for k in range(Nt):
                dist[k, m] = distance(covtest[k, :, :], self.covmeans[m],
                                      metric=self.metric_dist)
        return dist

After Change


            dist = [distance(covtest, self.covmeans[m], self.metric_dist)
                    for m in range(Nc)]
        else:
            dist = Parallel(n_jobs=self.n_jobs)(delayed(distance)(covtest, self.covmeans[m], self.metric_dist) for m in range(Nc))

        dist = numpy.concatenate(dist, axis=1)
        return dist
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: alexandrebarachant/pyRiemann
Commit Name: b45f35862afbca09ff1c70be1cc4d1d6ca6c9617
Time: 2015-07-03
Author: alexandre.barachant@gmail.com
File Name: pyriemann/classification.py
Class Name: MDM
Method Name: _predict_distances


Project Name: scikit-learn/scikit-learn
Commit Name: 96a364e27fe2d4cb55328150a2c4b2d97acc8f3f
Time: 2020-07-26
Author: git@jjerphan.xyz
File Name: sklearn/calibration.py
Class Name: CalibratedClassifierCV
Method Name: fit


Project Name: dask/dask-image
Commit Name: b4ae3a5a56f63b1ed65370d2bb074503026cc1c4
Time: 2018-09-17
Author: jakirkham@gmail.com
File Name: dask_image/ndmeasure/__init__.py
Class Name:
Method Name: label