b45f35862afbca09ff1c70be1cc4d1d6ca6c9617,pyriemann/classification.py,MDM,_predict_distances,#MDM#,46
Before Change
for m in range(Nc):
for k in range(Nt):
dist[k, m] = distance(covtest[k, :, :], self.covmeans[m],
metric=self.metric_dist)
return dist
After Change
dist = [distance(covtest, self.covmeans[m], self.metric_dist)
for m in range(Nc)]
else:
dist = Parallel(n_jobs=self.n_jobs)(delayed(distance)(covtest, self.covmeans[m], self.metric_dist) for m in range(Nc))
dist = numpy.concatenate(dist, axis=1)
return dist
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: alexandrebarachant/pyRiemann
Commit Name: b45f35862afbca09ff1c70be1cc4d1d6ca6c9617
Time: 2015-07-03
Author: alexandre.barachant@gmail.com
File Name: pyriemann/classification.py
Class Name: MDM
Method Name: _predict_distances
Project Name: scikit-learn/scikit-learn
Commit Name: 96a364e27fe2d4cb55328150a2c4b2d97acc8f3f
Time: 2020-07-26
Author: git@jjerphan.xyz
File Name: sklearn/calibration.py
Class Name: CalibratedClassifierCV
Method Name: fit
Project Name: dask/dask-image
Commit Name: b4ae3a5a56f63b1ed65370d2bb074503026cc1c4
Time: 2018-09-17
Author: jakirkham@gmail.com
File Name: dask_image/ndmeasure/__init__.py
Class Name:
Method Name: label