models = load_train_times()
for i, (timestamp, name, path) in enumerate(models):
if int(name) < FLAGS.start:
logging.info("Skiping %s", name)
continue
winrate = evaluate_model(path)
if winrate >= FLAGS.winrate:
print("Model {} beat target after {}s".format(name, timestamp))
After Change
models = load_train_times()
// Skip all models earlier than start and apply step.
models = [x for x in models if int(x[1]) >= FLAGS.start][::FLAGS.step]
for i, (timestamp, name, path) in enumerate(models):
winrate = evaluate_model(path)
if winrate >= FLAGS.winrate: