b7c2f6e9ccd65a53d8ae9aa0d3ee287ce9c93019,librosa/feature.py,,estimate_tuning,#,243

Before Change


    
    bins     = np.linspace(-0.5, 0.5, np.ceil(1./resolution), endpoint=False)
  
    counts, tuning = np.histogram(residual, bins)
    
    // return the histogram peak
    return tuning[np.argmax(counts)]

After Change


    // Only count magnitude where frequency is > 0
    pitch_mask = pitch > 0
    
    threshold = np.median(mag[pitch_mask])
    
    return librosa.feature.pitch_tuning( pitch[(mag > threshold) & pitch_mask], 
                                            resolution=resolution, 
                                            bins_per_octave=bins_per_octave)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 3

Instances


Project Name: librosa/librosa
Commit Name: b7c2f6e9ccd65a53d8ae9aa0d3ee287ce9c93019
Time: 2014-02-07
Author: brm2132@columbia.edu
File Name: librosa/feature.py
Class Name:
Method Name: estimate_tuning


Project Name: timvieira/arsenal
Commit Name: 3b84e8fc7a0d418254589693aa4fcdce0612f0b3
Time: 2018-01-17
Author: tim.f.vieira@gmail.com
File Name: arsenal/viz/learning_curve.py
Class Name: LearningCurve
Method Name: plot


Project Name: astroML/astroML
Commit Name: d1f932a01a3a2d73167dea9be55ffae747d1b66b
Time: 2018-11-30
Author: bsipocz@gmail.com
File Name: astroML/stats/tests/test_stats.py
Class Name:
Method Name: test_median_sigmaG