b7c2f6e9ccd65a53d8ae9aa0d3ee287ce9c93019,librosa/feature.py,,estimate_tuning,#,243
 
Before Change
    
    bins     = np.linspace(-0.5, 0.5, np.ceil(1./resolution), endpoint=False)
  
    counts, tuning = np.histogram(residual, bins)
    
    // return the histogram peak
    return tuning[np.argmax(counts)]
After Change
    // Only count magnitude where frequency is > 0
    pitch_mask = pitch > 0
    
    threshold = np.median(mag[pitch_mask])
    
    return librosa.feature.pitch_tuning( pitch[(mag > threshold) & pitch_mask], 
                                            resolution=resolution, 
                                            bins_per_octave=bins_per_octave)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
 Project Name: librosa/librosa
 Commit Name: b7c2f6e9ccd65a53d8ae9aa0d3ee287ce9c93019
 Time: 2014-02-07
 Author: brm2132@columbia.edu
 File Name: librosa/feature.py
 Class Name: 
 Method Name: estimate_tuning
 Project Name: timvieira/arsenal
 Commit Name: 3b84e8fc7a0d418254589693aa4fcdce0612f0b3
 Time: 2018-01-17
 Author: tim.f.vieira@gmail.com
 File Name: arsenal/viz/learning_curve.py
 Class Name: LearningCurve
 Method Name: plot
 Project Name: astroML/astroML
 Commit Name: d1f932a01a3a2d73167dea9be55ffae747d1b66b
 Time: 2018-11-30
 Author: bsipocz@gmail.com
 File Name: astroML/stats/tests/test_stats.py
 Class Name: 
 Method Name: test_median_sigmaG