ca907342507c1139696f542de0a3351d7a382eee,reinforcement_learning/reinforce.py,,,#,77
Before Change
state, reward, done, _ = env.step(action)
if args.render:
env.render()
policy.rewards.append(reward)
if done:
break
running_reward = running_reward * 0.99 + t * 0.01
After Change
if __name__ == "__main__":
main()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/reinforce.py
Class Name:
Method Name:
Project Name: dask/dask-image
Commit Name: 9982ea13b8562996047c96381e96fbc720973fee
Time: 2018-06-18
Author: jakirkham@gmail.com
File Name: docs/conf.py
Class Name:
Method Name: run_apidoc
Project Name: pytorch/examples
Commit Name: ca907342507c1139696f542de0a3351d7a382eee
Time: 2017-12-04
Author: sgross@fb.com
File Name: reinforcement_learning/actor_critic.py
Class Name:
Method Name: