eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6,examples/federated_learning_with_encryption.py,Client,fit,#Client#,117
Before Change
//
// print("Error %.4f" % mean_square_error(self.predict(X), y))
self.weights = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
// print(self.weights)
return self
After Change
Linear regression for n_iter. Reset the weights.
length, dim = X.shape
self.weights = np.zeros(dim)
for _ in range(n_iter):
for i in range(length):
delta = self.predict(X[i, :]) - y[i]
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: data61/python-paillier
Commit Name: eb4ffb6cdaf6f04f978fc57e32c95c8b4a33bcb6
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name: Client
Method Name: fit
Project Name: pymanopt/pymanopt
Commit Name: 06f40aff5fafd3db599ae361d8d7aa33f3142038
Time: 2016-01-18
Author: jamiehntownsend@gmail.com
File Name: pymanopt/manifolds/grassmann.py
Class Name: Grassmann
Method Name: retr
Project Name: pymanopt/pymanopt
Commit Name: a1be7bf2f0926707e25b02570c17ba373878f768
Time: 2016-03-14
Author: jamiehntownsend@gmail.com
File Name: pymanopt/manifolds/psd.py
Class Name: PositiveDefinite
Method Name: exp