trainLabels.append([str(story.id)])
else:
continue
self.Y = self.lb.fit_transform(trainLabels)
def train(self):
trainFeatures = []
for labeledSentence in self.labeledSentences:
After Change
raise Exception("NO_DATA")
trainLabels = []
self.labeledSentences = []
self.trainLabels = []
self.PATH = "models/intent.model"
for story in stories:
labeledSentencesTemp = story.labeledSentences
if not isListEmpty(labeledSentencesTemp):