2f381632862d04f55a0cb8c396804f93c9d0cad5,skopt/tree_opt.py,,_tree_minimize,#,27

Before Change


                func_call_no=func_call_no))
            func_call_no += 1

            if callback is not None:
                callback(set_results(x0, y0, space, rng, specs))
    elif x0:
        if isinstance(y0, Iterable):
            y0 = list(y0)
        elif isinstance(y0, numbers.Number):

After Change


                   random_state=None, acq="EI", xi=0.01, kappa=1.96,
                   verbose=False, specs=None, callback=None):

    if callback is not None:
        if isinstance(callback, Callable):
            callback = [callback]
        elif not (isinstance(callback, list) and
                  all([isinstance(c, Callable) for c in callback])):
            raise ValueError("callback should be either a callable or "
                             "a list of callables.")

    rng = check_random_state(random_state)
    space = Space(dimensions)

    // Initialize with provided points (x0 and y0) and/or random points
    if n_calls <= 0:
        raise ValueError(
            "Expected `n_calls` > 0, got %d" % n_random_starts)

    if x0 is None:
        x0 = []
    elif not isinstance(x0[0], list):
        x0 = [x0]

    if not isinstance(x0, list):
        raise ValueError("`x0` should be a list, but got %s" % type(x0))

    n_init_func_calls = len(x0) if y0 is None else 0
    n_total_init_calls = n_random_starts + n_init_func_calls

    if n_total_init_calls <= 0:
        // if x0 is not provided and n_random_starts is 0 then
        // it will ask for n_random_starts to be > 0.
        raise ValueError(
            "Expected `n_random_starts` > 0, got %d" % n_random_starts)

    if n_calls < n_total_init_calls:
        raise ValueError(
            "Expected `n_calls` >= %d, got %d" % (n_total_init_calls, n_calls))

    func_call_no = 1
    if y0 is None and x0:
        y0 = []
        for i, x in enumerate(x0):

            y0.append(verbose_func(
                func, x, verbose=verbose, prev_ys=y0, x_info="provided",
                func_call_no=func_call_no))
            func_call_no += 1

            if callback is not None:
                curr_res = create_result(x0, y0, space, rng, specs)
                for c in callback:
                    c(curr_res)
    elif x0:
        if isinstance(y0, Iterable):
            y0 = list(y0)
        elif isinstance(y0, numbers.Number):
            y0 = [y0]
        else:
            raise ValueError(
                "`y0` should be an iterable or a scalar, got %s" % type(y0))
        if len(x0) != len(y0):
            raise ValueError("`x0` and `y0` should have the same length")
        if not all(map(np.isscalar, y0)):
            raise ValueError("`y0` elements should be scalars")
    else:
        y0 = []

    // Random function evaluations.
    X_rand = space.rvs(n_samples=n_random_starts, random_state=rng)
    Xi = x0 + X_rand
    yi = y0

    for i, x in enumerate(X_rand):

        yi.append(verbose_func(
            func, x, verbose=verbose, prev_ys=yi, x_info="random",
            func_call_no=func_call_no))
        func_call_no += 1

        if callback is not None:
            curr_res = create_result(
                x0 + X_rand[:i + 1], yi, space, rng, specs)
            for c in callback:
                c(curr_res)

    if np.ndim(yi) != 1:
        raise ValueError("`func` should return a scalar")

    // Tree-based optimization loop
    models = []
    n_model_iter = n_calls - n_total_init_calls
    for i in range(n_model_iter):

        if verbose:
            print("Fitting model no: %d" % (i + 1))

        rgr = clone(base_estimator)
        rgr.fit(space.transform(Xi), yi)
        models.append(rgr)

        // `rgr` predicts constants for each leaf which means that the EI
        // has zero gradient over large distances. As a result we can not
        // use gradient based optimizers like BFGS, so using random sampling
        // for the moment.
        X = space.transform(space.rvs(n_samples=n_points,
                                      random_state=rng))
        values = _gaussian_acquisition(
            X=X, model=rgr, y_opt=np.min(yi), method=acq,
            xi=xi, kappa=kappa)
        next_x = X[np.argmin(values)]
        next_x = space.inverse_transform(next_x.reshape((1, -1)))[0]

        yi.append(verbose_func(
            func, next_x, verbose=verbose, prev_ys=yi,
            func_call_no=func_call_no))
        func_call_no += 1

        Xi.append(next_x)

        if callback is not None:
            curr_res = create_result(Xi, yi, space, rng, specs)
            for c in callback:
                c(curr_res)

    return create_result(Xi, yi, space, rng, specs, models)


def gbrt_minimize(func, dimensions, base_estimator=None, n_calls=100,
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 27

Instances


Project Name: scikit-optimize/scikit-optimize
Commit Name: 2f381632862d04f55a0cb8c396804f93c9d0cad5
Time: 2016-08-08
Author: manojkumarsivaraj334@gmail.com
File Name: skopt/tree_opt.py
Class Name:
Method Name: _tree_minimize


Project Name: scikit-optimize/scikit-optimize
Commit Name: 2f381632862d04f55a0cb8c396804f93c9d0cad5
Time: 2016-08-08
Author: manojkumarsivaraj334@gmail.com
File Name: skopt/gp_opt.py
Class Name:
Method Name: gp_minimize


Project Name: scikit-optimize/scikit-optimize
Commit Name: 2f381632862d04f55a0cb8c396804f93c9d0cad5
Time: 2016-08-08
Author: manojkumarsivaraj334@gmail.com
File Name: skopt/dummy_opt.py
Class Name:
Method Name: dummy_minimize


Project Name: scikit-optimize/scikit-optimize
Commit Name: 2f381632862d04f55a0cb8c396804f93c9d0cad5
Time: 2016-08-08
Author: manojkumarsivaraj334@gmail.com
File Name: skopt/tree_opt.py
Class Name:
Method Name: _tree_minimize