f8df6021a1343d511d4c9b4c108ec5b683ce5487,modAL/batch.py,,ranked_batch,#,103

Before Change



    // Add uncertainty scores to our unlabeled data, and keep a copy of our unlabeled data.
    unlabeled_uncertainty = np.concatenate((unlabeled, np.expand_dims(uncertainty_scores, axis=1)), axis=1)
    unlabeled_uncertainty_copy = np.copy(unlabeled_uncertainty)

    // Define our record container and the maximum number of records to sample.
    instance_index_ranking = []
    ceiling = np.minimum(unlabeled.shape[0], n_instances)

    // TODO (dataframing) is there a better way to do this? Inherently sequential.
    for _ in range(ceiling):

        // Select the instance from our unlabeled copy that scores highest.
        raw_instance = select_instance(X_training=labeled, X_uncertainty=unlabeled_uncertainty_copy)
        instance = np.expand_dims(raw_instance, axis=1)

        // Find our record"s index in both the original unlabeled and our uncertainty copy.
        instance_index_original = np.where(np.all(unlabeled == raw_instance, axis=1))[0][0]
        instance_index_copy = np.where(np.all(unlabeled_uncertainty_copy[:, :-1] == instance.T, axis=1))[0][0]

        // Add our instance we"ve considered for labeling to our labeled set. Although we don"t
        // know it"s label, we want further iterations to consider the newly-added instance so
        // that we don"t query the same instance redundantly.
        labeled = np.concatenate((labeled, instance.T), axis=0)

After Change



    // Add uncertainty scores to our unlabeled data, and keep a copy of our unlabeled data.
    expanded_uncertainty_scores = np.expand_dims(uncertainty_scores, axis=1)
    unlabeled_uncertainty = np.concatenate((unlabeled, expanded_uncertainty_scores), axis=1)

    // Define our null row, which will be filtered during the select_instance call.
    null_row = np.ones(shape=(unlabeled_uncertainty.shape[1],)) * np.nan
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: modAL-python/modAL
Commit Name: f8df6021a1343d511d4c9b4c108ec5b683ce5487
Time: 2018-08-14
Author: dannyofig@gmail.com
File Name: modAL/batch.py
Class Name:
Method Name: ranked_batch


Project Name: tensorly/tensorly
Commit Name: 5f078112011a66a93432cb6d38c03935a10f382e
Time: 2020-07-10
Author: git@ameyer.me
File Name: tensorly/decomposition/candecomp_parafac.py
Class Name:
Method Name: non_negative_parafac


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: f30d0cf22296a27ea1e858c6873c0e3c9d8b0403
Time: 2019-06-11
Author: redoykhan555@gmail.com
File Name: imblearn/under_sampling/_prototype_selection/_instance_hardness_threshold.py
Class Name: InstanceHardnessThreshold
Method Name: _fit_resample