7ba65487591fb4795d6384540bd4f580e820ff61,keras_gat/graph_attention_layer.py,GraphAttention,call,#GraphAttention#,78

Before Change



            // Compute feature combinations
            repeated = K.reshape(K.tile(linear_transf_X, [1, N]), (N * N, self.F_))  // (N^2 x F")
            tiled = K.tile(linear_transf_X, [N, 1])  // (N^2 x F")
            combinations = K.concatenate([repeated, tiled])  // (N^2 x 2F")
            combination_slices = K.reshape(combinations, (N, -1, 2 * self.F_))  // (N x N x 2F")

            // Attention head
            dense = K.squeeze(K.dot(combination_slices, attention_kernel), -1)  // a(Wh_i, Wh_j) in the paper (N x N x 1)

After Change



            // Compute feature combinations
            // Note: [[a_1], [a_2]]^T [[Wh_i], [Wh_2]] = [a_1]^T [Wh_i] + [a_2]^T [Wh_j]
            attn_for_self = K.dot(
                linear_transf_X, attention_kernel[0])  // (N x 1), [a_1]^T [Wh_i]
            attn_for_neighs = K.dot(
                linear_transf_X, attention_kernel[1])  // (N x 1), [a_2]^T [Wh_j]

            // Attention head a(Wh_i, Wh_j) = a^T [[Wh_i], [Wh_j]]
            dense = attn_for_self + K.transpose(attn_for_neighs)  // (N x N) via broadcasting

            // add nonlinearty
            dense = LeakyReLU(alpha=0.2)(dense)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: danielegrattarola/keras-gat
Commit Name: 7ba65487591fb4795d6384540bd4f580e820ff61
Time: 2018-03-14
Author: mwright@berkeley.edu
File Name: keras_gat/graph_attention_layer.py
Class Name: GraphAttention
Method Name: call


Project Name: danielegrattarola/keras-gat
Commit Name: 9d56361641a64ff73ac630812ecd4964eedbc7aa
Time: 2017-11-09
Author: daniele.grattarola@gmail.com
File Name: gat/graph_attention_layer.py
Class Name: GraphAttention
Method Name: call


Project Name: fabianp/mord
Commit Name: ee143e803c2fa352d1c42c95335773639267f190
Time: 2015-07-14
Author: f@bianp.net
File Name: mord/threshold_based.py
Class Name:
Method Name: grad_margin