b104ef8ea5f6e98b0b05a5cf068bba0c8689d445,rankeval/visualization/effectiveness.py,,plot_tree_wise_average_contribution,#,462

Before Change


            axes.set_xlabel("Number of trees")
            axes.legend(performance.coords["model"].values)

            plt.tight_layout()


def plot_query_wise_performance(performance, compare="model"):
    for dataset in performance.coords["dataset"].values:

After Change


        
        for i, model in enumerate(performance.coords["model"].values):
            k_values = performance.sel(dataset=dataset, model=model)
            axes[i, 0].plot(k_values.values)
            axes[i, 0].legend((model,), loc="upper center")

        axes[i, 0].set_xlabel("Number of trees")
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 3

Instances


Project Name: hpclab/rankeval
Commit Name: b104ef8ea5f6e98b0b05a5cf068bba0c8689d445
Time: 2017-07-27
Author: cristina.i.muntean@gmail.com
File Name: rankeval/visualization/effectiveness.py
Class Name:
Method Name: plot_tree_wise_average_contribution


Project Name: open-mmlab/mmdetection
Commit Name: 308f0d768d08db821fdc1a30dc2fb57f439410e8
Time: 2021-01-12
Author: 1286304229@qq.com
File Name: mmdet/apis/inference.py
Class Name:
Method Name: show_result_pyplot


Project Name: hpclab/rankeval
Commit Name: cb840cb2da9012a3df001889370c131e8ac96498
Time: 2017-07-27
Author: cristina.i.muntean@gmail.com
File Name: rankeval/visualization/effectiveness.py
Class Name:
Method Name: plot_query_wise_performance


Project Name: hpclab/rankeval
Commit Name: 8ca98bfc5d01f672a5ccfb507660e3877a13738f
Time: 2017-07-27
Author: cristina.i.muntean@gmail.com
File Name: rankeval/visualization/effectiveness.py
Class Name:
Method Name: plot_document_graded_relevance