dim = len(dist)
poly = setdim(poly, dim)
zero = [1]*dim
out = numpy.zeros((dim,) + poly.shape, dtype=float)
V = Var(poly, dist, **kws)
for i in range(dim):
After Change
out = numpy.zeros((dim,)+poly.shape, dtype=float)
variance = Var(poly, dist, **kws)
valids = variance != 0
if not numpy.all(valids):
out[:, valids] = Sens_t(poly[valids], dist, **kws)
return out
out[:] = variance
for idx, unit_vec in enumerate(numpy.eye(dim, dtype=int)):
conditional = E_cond(poly, 1-unit_vec, dist, **kws)
out[idx] -= Var(conditional, dist, **kws)
out[idx] /= variance