06f40aff5fafd3db599ae361d8d7aa33f3142038,pymanopt/manifolds/grassmann.py,Grassmann,retr,#Grassmann#,90

Before Change


            // Calculate "thin" qr decomposition of X + G
            q, r = np.linalg.qr(X + G)
            // Unflip any flipped signs
            XNew = np.dot(q, np.diag(np.sign(np.sign(np.diag(r))+.5)))
            return XNew
        else:
            XNew = X + G
            for i in xrange(self._k):

After Change


            // columns. Compare this with the Stiefel manifold.

            // Compute the polar factorization of Y = X+G
            u, s, v = svd(X + G, full_matrices=False)
            XNew = u.dot(v.T);
        else:
            XNew = np.zeros(np.shape(X))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: pymanopt/pymanopt
Commit Name: 06f40aff5fafd3db599ae361d8d7aa33f3142038
Time: 2016-01-18
Author: jamiehntownsend@gmail.com
File Name: pymanopt/manifolds/grassmann.py
Class Name: Grassmann
Method Name: retr


Project Name: neurodsp-tools/neurodsp
Commit Name: 6432d83fc96f607d48117681c9de71ce7e7ba8ec
Time: 2019-03-17
Author: tdonoghue@ucsd.edu
File Name: neurodsp/sim/combined.py
Class Name:
Method Name: sim_noisy_bursty_oscillation


Project Name: neurodsp-tools/neurodsp
Commit Name: 6432d83fc96f607d48117681c9de71ce7e7ba8ec
Time: 2019-03-17
Author: tdonoghue@ucsd.edu
File Name: neurodsp/sim/combined.py
Class Name:
Method Name: sim_noisy_oscillation