95b8e2a603f66cc3091e3266a717c0f206be3e95,FeatureSelection.py,,,#,34

Before Change



//Usinng Word2Vec 
model = gensim.models.Word2Vec(X, size=100) // x be tokenized text
w2v = dict(zip(model.wv.index2word, model.wv.syn0))


class MeanEmbeddingVectorizer(object):

After Change


train_count = countV.fit_transform(DataPrep.train_news["Statement"].values)

print(countV)
print(train_count)

//print training doc term matrix
//we have matrix of size of (10240, 12196) by calling below
def get_countVectorizer_stats():
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: nishitpatel01/Fake_News_Detection
Commit Name: 95b8e2a603f66cc3091e3266a717c0f206be3e95
Time: 2017-12-03
Author: nkp3@illinois.edu
File Name: FeatureSelection.py
Class Name:
Method Name:


Project Name: nishitpatel01/Fake_News_Detection
Commit Name: 3b49ffd98696ad697cf2b9685e581459d51ea0b1
Time: 2017-12-03
Author: nkp3@illinois.edu
File Name: FeatureSelection.py
Class Name:
Method Name:


Project Name: estnltk/estnltk
Commit Name: d02455a981e07a6fbf56e0e128b0aa085d112aed
Time: 2014-12-12
Author: brainscauseminds@gmail.com
File Name: estnltk/examples/ex10.py
Class Name:
Method Name: