1bcbc90debe300740369b1151b3f1b8523289f91,examples/federated_learning_with_encryption.py,,federated_learning,#,196
Before Change
"training only on own local data:")
for c in clients:
c.fit(n_iter, eta)
y_pred = c.predict(X_test)
mse = mean_square_error(y_pred, y_test)
print("{:s}:\t{:.2f}".format(c.name, mse))
// The federated learning with gradient descent
print("Running distributed gradient aggregation for {:d} iterations"
.format(n_iter))
After Change
// Instantiate the server and generate private and public keys
// NOTE: using smaller keys sizes wouldn"t be cryptographically safe
server = Server(key_length=config["key_length"] )
// Instantiate the clients.
// Each client gets the public key at creation and its own local dataset
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: data61/python-paillier
Commit Name: 1bcbc90debe300740369b1151b3f1b8523289f91
Time: 2018-06-26
Author: wilko.henecka@data61.csiro.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name: federated_learning
Project Name: data61/python-paillier
Commit Name: 8184b9fdf51e3f75835fe1f2d56c294d16686241
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name:
Project Name: data61/python-paillier
Commit Name: 0d033a90362960dc38787bc8c1b35fcda25d87ca
Time: 2017-06-20
Author: giorgio.patrini@anu.edu.au
File Name: examples/linear_regression_encrypted_data.py
Class Name: PaillierLinearRegression
Method Name: fit