e949a7462a0552c36e13f5d0d9147c4fc52cee32,librosa/feature/utils.py,,sync,#,233
Before Change
raise ParameterError("Synchronized data has ndim={:d},"
" must be 1 or 2.".format(data.ndim))
data = np.atleast_2d(data)
if aggregate is None:
aggregate = np.mean
After Change
data_agg = np.empty(agg_shape, order="F")
idx_in = [slice(None)] * data.ndim
idx_agg = [slice(None)] * data_agg.ndim
for (i, segment) in enumerate(slices):
idx_in[axis] = segment
idx_agg[axis] = i
data_agg[idx_agg] = aggregate(data[idx_in], axis=axis)
return data_agg
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 4
Instances Project Name: librosa/librosa
Commit Name: e949a7462a0552c36e13f5d0d9147c4fc52cee32
Time: 2015-08-14
Author: brian.mcfee@nyu.edu
File Name: librosa/feature/utils.py
Class Name:
Method Name: sync
Project Name: librosa/librosa
Commit Name: 0e079c3de49b0f221495e3bbebbeb44f8ed7c255
Time: 2015-08-25
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: subsegment
Project Name: scikit-learn-contrib/DESlib
Commit Name: 85d5c30d2186d07857d1f0fb7c269eb08d2b7d79
Time: 2018-04-07
Author: rafaelmenelau@gmail.com
File Name: deslib/des/des_clustering.py
Class Name: DESClustering
Method Name: classify_with_ds