9b95e0f07b60b6a144893dcc506dfaf90db61c95,librosa/feature/utils.py,,stack_memory,#,119

Before Change



    data = np.pad(data, [(0, 0), padding], **kwargs)

    history = np.vstack([np.roll(data, -i * delay, axis=1) for i in range(n_steps)[::-1]])

    // Trim to original width
    if delay > 0:
        history = history[:, :t]
    else:
        history = history[:, -t:]

    // Make contiguous

After Change


    data = np.pad(data, [(0, 0), padding], **kwargs)

    // Construct the shape of the target array
    shape = list(data.shape)
    shape[0] = shape[0] * n_steps
    shape[1] = t
    shape = tuple(shape)

    // Construct the output array to match layout and dtype of input
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 4

Instances


Project Name: librosa/librosa
Commit Name: 9b95e0f07b60b6a144893dcc506dfaf90db61c95
Time: 2020-05-18
Author: bmcfee@users.noreply.github.com
File Name: librosa/feature/utils.py
Class Name:
Method Name: stack_memory


Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 1a89404a84393211c7b370077fafe536a8f44762
Time: 2018-03-02
Author: max.lapan@gmail.com
File Name: ch17/lib/common.py
Class Name:
Method Name: iterate_batches


Project Name: librosa/librosa
Commit Name: f5122cdab53605b7b800c96d6700b791b8c9add8
Time: 2016-04-26
Author: brian.mcfee@nyu.edu
File Name: librosa/segment.py
Class Name:
Method Name: lag_to_recurrence