000a22e7ead9a184a325b3913e814f1f80636a6f,mlxtend/regressor/stacking_cv_regression.py,StackingCVRegressor,fit,#StackingCVRegressor#,119

Before Change


        if not self.use_features_in_secondary:
            self.meta_regr_.fit(meta_features, y)
        elif sparse.issparse(X):
            self.meta_regr_.fit(sparse.hstack((X, meta_features)), y)
        else:
            self.meta_regr_.fit(np.hstack((X, meta_features)), y)
        // Retrain base models on all data
        for regr in self.regr_:

After Change


                if sample_weight is None:
                    instance.fit(X[train_idx], y[train_idx])
                else:
                    instance.fit(X[train_idx], y[train_idx],
                                 sample_weight=sample_weight[train_idx])
                y_pred = instance.predict(X[holdout_idx])
                meta_features[holdout_idx, i] = y_pred
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 5

Non-data size: 4

Instances


Project Name: rasbt/mlxtend
Commit Name: 000a22e7ead9a184a325b3913e814f1f80636a6f
Time: 2018-09-23
Author: kmori05@gmail.com
File Name: mlxtend/regressor/stacking_cv_regression.py
Class Name: StackingCVRegressor
Method Name: fit


Project Name: philipperemy/keras-tcn
Commit Name: 8ff135bfe2df23037272b8cba6b26bd7f4cf0f45
Time: 2018-03-22
Author: premy@reactive.co.jp
File Name: mnist_pixel/main.py
Class Name:
Method Name: run_task


Project Name: data61/python-paillier
Commit Name: 1bcbc90debe300740369b1151b3f1b8523289f91
Time: 2018-06-26
Author: wilko.henecka@data61.csiro.au
File Name: examples/federated_learning_with_encryption.py
Class Name:
Method Name: federated_learning


Project Name: rasbt/mlxtend
Commit Name: f0f4ba31aaec58f607df632cfbec5fd39802958f
Time: 2015-04-09
Author: se.raschka@me.com
File Name: mlxtend/evaluate/learning_curves.py
Class Name:
Method Name: plot_learning_curves


Project Name: IBM/AIF360
Commit Name: e3a249cd2de8b2518470021db0f579e26cafbfba
Time: 2020-02-19
Author: hoffman.sc@gmail.com
File Name: aif360/sklearn/inprocessing/adversarial_debiasing.py
Class Name: AdversarialDebiasing
Method Name: decision_function