b4757f7fe5b8d238ebb4cb150aeba52306c12071,sklearn/inspection/_plot/partial_dependence.py,PartialDependenceDisplay,plot,#PartialDependenceDisplay#,425

Before Change



            self.axes_ = np.empty((n_rows, n_cols), dtype=np.object)
            self.lines_ = np.empty((n_rows, n_cols), dtype=np.object)
            self.contours_ = np.empty((n_rows, n_cols), dtype=np.object)

            axes_ravel = self.axes_.ravel()

After Change


        lines_ravel = self.lines_.ravel(order="C")
        contours_ravel = self.contours_.ravel(order="C")
        vlines_ravel = self.deciles_vlines_.ravel(order="C")
        hlines_ravel = self.deciles_hlines_.ravel(order="C")

        for i, axi, fx, (avg_preds, values) in zip(count(),
                                                   self.axes_.ravel(),
                                                   self.features,
                                                   self.pd_results):
            if len(values) == 1:
                lines_ravel[i] = axi.plot(values[0],
                                          avg_preds[self.target_idx].ravel(),
                                          **line_kw)[0]
            else:
                // contour plot
                XX, YY = np.meshgrid(values[0], values[1])
                Z = avg_preds[self.target_idx].T
                CS = axi.contour(XX, YY, Z, levels=Z_level, linewidths=0.5,
                                 colors="k")
                contours_ravel[i] = axi.contourf(XX, YY, Z, levels=Z_level,
                                                 vmax=Z_level[-1],
                                                 vmin=Z_level[0],
                                                 **contour_kw)
                axi.clabel(CS, fmt="%2.2f", colors="k", fontsize=10,
                           inline=True)

            trans = transforms.blended_transform_factory(axi.transData,
                                                         axi.transAxes)
            ylim = axi.get_ylim()
            vlines_ravel[i] = axi.vlines(self.deciles[fx[0]], 0, 0.05,
                                         transform=trans, color="k")
            axi.set_ylim(ylim)

            // Set xlabel if it is not already set
            if not axi.get_xlabel():
                axi.set_xlabel(self.feature_names[fx[0]])

            if len(values) == 1:
                if n_cols is None or i % n_cols == 0:
                    axi.set_ylabel("Partial dependence")
                else:
                    axi.set_yticklabels([])
                axi.set_ylim(self.pdp_lim[1])
            else:
                // contour plot
                trans = transforms.blended_transform_factory(axi.transAxes,
                                                             axi.transData)
                xlim = axi.get_xlim()
                hlines_ravel[i] = axi.hlines(self.deciles[fx[1]], 0, 0.05,
                                             transform=trans, color="k")
                // hline erases xlim
                axi.set_ylabel(self.feature_names[fx[1]])
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 4

Instances


Project Name: scikit-learn/scikit-learn
Commit Name: b4757f7fe5b8d238ebb4cb150aeba52306c12071
Time: 2020-04-19
Author: contact@nicolas-hug.com
File Name: sklearn/inspection/_plot/partial_dependence.py
Class Name: PartialDependenceDisplay
Method Name: plot


Project Name: scikit-image/scikit-image
Commit Name: b8a5e5db6c2c0ff9540d84c11c05b21fc6023ae6
Time: 2020-05-04
Author: rfezzani@gmail.com
File Name: skimage/color/colorconv.py
Class Name:
Method Name: rgba2rgb


Project Name: yzhao062/pyod
Commit Name: 24d96c7ec2d80322ceb7a084199b891c9ebf88b9
Time: 2019-03-12
Author: yalmardeny@tssg,org
File Name: pyod/models/sod.py
Class Name: SOD
Method Name: _snn


Project Name: nilearn/nilearn
Commit Name: 6a8a0266b3f2cbae5ce8cce03996f2c55107c969
Time: 2018-10-20
Author: pierre.bellec@gmail.com
File Name: nilearn/plotting/html_stat_map.py
Class Name:
Method Name: view_stat_map